
DOCUMENT RESUME

ED 357 085 TM 019 864

AUTHOR Cohen, Allan S.; Kim, Seock-Ho
TITLE A Comparison of Equating Methods under the Graded

Response Model.
PUB DATE Apr 93
NOTE 27p.; Paper presented at the Annual Meeting of the

National Council on Measurement in Education
(Atlanta, GA, April 13-15, 1993).

PUB TYPE Reports Evaluative/Feasibility (142)
Speeches /Conference Papers (150)

EDRS PRICE MF01/PCO2 Plus Postage.
DESCRIPTORS *Chi Square; Comparative Analysis; Computer

Simulation; *Equated Scores; *Equations
(Mathematics); *Item Response Theory; *Mathematical
Models; Research Methodology; Sample Size; *Test
Items; Test Length

IDENTIFIERS Calibration; *Graded Response Model; Mean
(Statistics); Sigma Methods; Test Characteristic
Curve; Test Equivalence

ABSTRACT
Equating tests from different calibrations under item

response theory (IRT) requires calculation of the slope and intercept
of the appropriate linear transformation. Two methods have been
proposed recently for equating graded response items under IRT, a
test characteristic curve method and a minimum chi-square method.
These two methods are comparee with three mean and sigma methods
using computer simulations. Ten- and 30-item tests were simulated for
300 and 1,000 examinees. Results under these simulated conditions
indicate that recovery is good for all conditions. Recovery is
slightly better for the long test and the large sample, but
differences among all simulated conditions are quite small.
Essentially no differences are observed among the linking methods.
One could feel relatively comfortable using any of the five equating
methods when ability and item location distributions are
well-matched. The simplest equating method is the B. H. Loyd and H.
D. Hoover (LH) mean and sigma method (1980). The minimum chi-square
has some advantage in ease of use over the test characteristic curve
method, but both are more complicated than the LH method. Eight
tables present analysis results. (SLD)

***********************************************************************

Reproductions supplied by EDRS are the best that can be made
from the original document.

***********************************************************************



U.S. DEPARTMENT OF EDUCATION
Office I Educalonel Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

Cefinis document has been reproduced as
received from the person or organization
originating it

C Minor changes have been made lo improve
reproduction Quality

Points of view or opinionsstated in thisdocu
'rent do not necessarily represent office'
OEFII position or policy

-PERMISSION TO REPRODUCE T);IS
MATERIAL HAS BEEN GRANTED BY

5E6ek-§o /6/1-1

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

A Comparison of Equating Methods
Under the Graded Response Model

Allan S. Cohen and SeockHo Kim

University of Wisconsin-Madison

March 19, 1993

Running Head: EQUATING IN THE GRADED RESPONSE MODEL

Paper presented at the annual meeting of the National Council on Measurement in

Education, Atlanta, GA, April, 1993.

r
se;Lz.



Equating in the Graded Response Model 2

Abstract

Equating tests from different calibrations under Item Response Theory (IRT) re-

quires calculation of the slope and intercept of the appropriate linear transformation.

Two methods have been proposed recently for equating of graded response items un-

der IRT, a test characteristic curve method and a minimum chi-square method. In

the present study, we provide a comparison using simulated data sets between these

two methods and three mean and sigma methods.

Index terms: equating, graded response model, item response theory.
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A Comparison of Equating Methods
Under the Graded Response Model

The metrics yielded by current item response theory (IRT) estimation algorithms

from separate calibrations for the same items are unique up to a linear transformation.

This means that, to equate tests which have been calibrated separately, it is

necessary to determine the slope and intercept of the linear equation which yields

the appropriate transformation. In the present paper, we compare results from five

methods for determining these two transformation coefficients for Samejima's (1969)

graded response model.

Three general classes of equating methods have been described for the dichotomous

IRT model: characteristic curve methods, minimum chi-square methods, and mean

and sigma methods. Characteristic curve methods (cf. Divgi, 1980; Haebara, 1980;

Stocking & Lord, 1983) make use of the information available from both the item

scrimination and item difficulty parameters. This class of methods is specifically

designed to obtain the slope and intercept coefficients by minimizing some measure

of the difference between the test characteristic curves estimated in each sample. The

Stocking and Lord procedure obtains the two equating coefficients by minimizing a

quadratic loss function based on differences in true scores yielded by the two test

calibrations. Baker (1992) extended this procedure to the graded response model.

The minimum chi-square method proposed by Divgi (1985) for dichotomously scored

items, which uses estimates of both item discrimination and difficulty parameters as

well as their standard errors, is computationally simpler than the Stocking and Lord

procedure. Kim and Cohen (in press) have extended the minimum chi-square method

to the graded response model.

Several methods, generally known as mean and sigma methods, have been

proposed that rely on the distributions of item difficulty and discrimination estimates
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(cf. Bejar & Wingersky, 1981; Cook, Eignor, & Hutton, 1979; Linn, Levine, Hastings,

& Wardrop, 1980, 1981; Marco, 1977; Vale, 1986). Mean and Sigma methods are

presently only described for the dichotomous model. Comparisons of linking results

c- dichotomous items suggest that for large samples and long tests, few differences

exist among the weighted mean and sigma method of Linn et al. (1980, 1981), the

method by Stocking and Lord (1983), and Divgi's (1985) minimum chi- square method

(Kim & Cohen, 1992). In the present study, we describe three variations of mean and

sigma methods for Samejima's (1969) graded response model and compare the results

to those obtained using the methods by Baker (1992) and Kim and Cohen (in press).

Equating Under IRT. Lord (1980) has shown that, under IRT, the relationship

of the metric between any two calibrations of the same items from different groups in

the same population is linear. Thus, when the estimates from the second calibration

are to be transformed to the metric of the first, the transformed estimates of item

discrimination and item difficulty parameters of item j for the dichotomously scored,

two-parameter IRT model are given by

and

a.si2 = ai2lA (1)

b;2 = Abi2 B, (2)

where * indicates a transformed value, the subscript 2 refers to the calibration from

the second group, A is the slope coefficient, and B is the intercept coefficient.

The value of the transformed ability estimate of person i can be expressed as

0:2 = A.0,2 + B. (3)

The task of equating the two metrics is to find the appropriate equating coefficients

A and B.
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Many different equating situations exist (cf. Vale, 1986). In this paper, we consider

only that situation for which a set of common items is administered to two groups of

examinees.

Samejima's Graded Response Model. Under Samejima's graded response

model (Samejimi, 1969), an item possesses mi ordered categories and the examinee

is permitted to select only one. Item parameters are estimated under the graded

response model via the use of the mi 1 boundary characteristic curves (BCCs). Each

of the BCCs represents the cumulative probablity of selecting response categories

greater than the category of interest (Samejima, 1969). The BCCs for item j

are characterized by an item discrimination parameter a3 and the mi 1 location

parameters kik.

The BCC in logistic form can be defined as

Pik(01) = [1 + expiai(Oi bik)1]-1 (4)

In the case of the metric from the second group being equated to that of the first,

the transformation for the graded response model can be obtained via

and

a ;2 = ai2/A (5)

Ab B.3k2 = 3 2 + B (6)

Samejima (1969) defines the operational characteristic curve (OCC) which shows

the probability of selecting a category. The OCC can be obtained from the boundary

curves as

1 Pii (B i) when k = 1
Pik(Oi) = Pi(mi-1){ (0i) when k = mi

Pi(k-1)(0i) FA(B;) otherwise.

e't

(7)
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Equating Methods for the Graded Response Model

Mean and Sigma Equating Methods for the Graded Response Model.

Three mean and sigma methods are described in this section for the graded response

model: a mean and sigma method (MS) (Marco, 1977), the Loyd and Hoover (1980)

method (LH), and a weighted mean and sigma method (WMS) by Linn et al. (1980,

1981).

For the MS method, it is assumed that the location paramet r from the first group,

= 1, , n; k = 1, ... ,m; 1), and from the second group, bik2, are linearly

related as

and hence,

biki = Ab jk2 B

ail = a;2/A.

The MS equating coefficients A and B are obtained from the following relation-

ships:

bl = A 12 + E (10)

where .61 and 12 are the means of the boas and bgas, respectively, and

S(bi) = A S(b2) (11)

where S(bi) and S(b2) are the standard deviations of kids and bik2s, respectively.

Thus, we can obtain A and B as

and

A = S(bi)/S(b2)

B =Th A-62.

(12)

(13)
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Loyd and Hoover (1980) used the ratio of item discrimination parameter estimates

from the two calibrations to obtain the A coefficient for their LH method. The LH

method was originally used under the Rasch model. Baker and Al-Karni (1991) used

the LH method to equate metrics for the three- parameter IRT model. Since we know

ail = ail/A, the A coefficient for the LH method for the graded response model can

be obtained as

and the B coefficient as

A = -d2ta1 (14)

B 61 A62 (15)

where a2 and al are the means of the ails and aps, respectively.

An important problem with the MS and LH methods is that poorly estimated item

difficulties can have a detrimental effect on the values of the A and B coefficients.

To overcome this problem, Linn et al. (1980, 1981) modified the MS procedure to

include a weighting of item difficulty estimates by the inverse of the larger of the

squared standard errors (see also Stocking & Lord, 1983). Stocking and Lord (1983)

further scaled this weight by the sum of weights across all items. For the graded

response model, the scaled weight for the location parameter estimate for item j and

category k, wik, is defined as

[max(SE(biki), Sgbjk2)}12
Woe

E7=1 Ek=ii1[max(SE(biki), SE(bik2) }]2

The weighted estimates of the location parameters are obtained as

(16)

bTki = wikbiki (17)
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and

b7k2 = wikbik2. (18)

Then, from the relationship

' = Al: + B (19)

and

S(br) = AS(Y2 ), (20)

the coefficients A and B are obtained as

A = S(bn/ SOD (21)

and

B = 4 Ar.; . (22)

Two additional refinements to the weighted mean and sigma method, of possible

interest, although not treated in the present study, are the robust mean and sigma

method described by Bejar and Wingerskky (1981) and the iterative mean and sigma

method by Stocking and Lord (1983). The objective of these methods is to further

decrease the impact of deviant item location parameter estimates on the linking

transformation using biweights described by Mosteller and Tukey (1977).

Test Characteristic Curve Method for Graded Response Model. Baker

(1992) extended the test characteristic curve method of Stocking and Lord (1983)

to the graded response model. Baker's technique for obtaining the two equating

coefficients was based on the minimization of the quadratic loss function

1 N

N
F = E(T1 71:2)2, (23)

where N is an arbitrary number of points along the first ability metric, To. and 772

are the true scores for the first and second groups, respectively, defined as
n mi

T1 = E E uikpikl(8i)
j=1 k =1

',)

(24)



Equating in the Graded Response Model 9

and
n

Ti; = E E 9i), (25)

where thik is the weight allocated to response category k for item j. Typically, although

not necessarily, this weight is the same as the integer index of the category.

The task is to find the values of A and B which minimize the quadratic loss

function in Equation (23). In the present study, the characteristic curve method

for the graded response model was used as implemented in the computer program

EQUATE2 (Baker, 1993).

Minimum Chi-Square for Graded Response Model. Kim and Cohen

(in press) extended the minimum chi-square method of Divgi (1985) to the graded

response model. The method is based on minimization of the quadratic function

where

and

n n

X2 = E Xjm, = E E 71 ejmj
j=1 1=1

= 2

jm11
= bin, , bjk1, , bi(ma-01)

= (2;2, b;12) 17;k2, " bkrnj -1)2) ,

Ejmj = E rni2,

(26)

(27)

(28)

(29)

(30)

where .jmjl is the estimated variance-covariance matrix of and gmi2 is the

transformed estimated variance-covariance matrix of 1* The equating coefficientsimi 2

A and B are found by minimizing this x2 differentiating with respect to A and B.
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Methods

Data Generation. Data for this study were generated for two test lengths, 10

and 30 items, and two sample sizes, 300 and 1,000 examinees, using the computer

program GENIRV (Baker, 1986). The two factors, test length and sample size, were

completely crossed to yield four conditions. All items had five categories. Each

test was replicated five times by changing the random number seed. Generating

parameters for the underlying ability and item difficulty distributions were both

normal (0, 1). The underlying item discrimination parameters were generated

uniformly over the interval from 1.0 to 2.0. All replication data sets for each of

the test lengths had the same set of underlying parameters.

Item Parameter Estimation. Marginal maximum likelihood item parameter

estimates were obtained via the computer program MULTILOG (Thissen, 1991).

Estimates from each replication were transformed to the metric of the generated data

sets using each of the five equating methods. Since the equating task is that of a

recovery study, the theoretical values for the linear equating coefficients are known

apriori and are A = 1.0 and B = 0.0.

Results

In this study, the parameter estimates were first transformed to the underlying

metric using each of the five equating methods. This yielded five different A and

B coefficients for each data set. Next, the recovery of the underlying parameters

was evaluated using root mean square differences (RMSDs) between the transformed

estimates and the underlying parameters. The smaller the RMSDs, the better the

equating method. In addition, correlations between the estimates and the generating

parameters were also computed. (Note: Correlations are scale-free meaning that

equating is not required.)

Equating Coefficients. Equating coefficients obtained from each of the five
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equating methods are given in Tables 1 and 2 for each replication for 300 examinee

samples for the 10- and 30- item tests, respectively. Results for the large sample,

1,000 examinee conditions are given in Tables 3 and 4 for the 10- and 30- item tests,

respectively.

Insert Tables 1, 2, 3, and 4 about here

Across all data sets, differences in A coefficients were quite small, occasionally

arising in the second decimal place but more often in the third or fourth. Differences of

this magnitude are essentially zero. In the small sample condition with 300 examinees,

differences among A values tended to be very small and not meaningfully different

from 1, the theoretically expected value for a recovery study. A values were basically

the same for all five equating methods in all four test length by sample size conditions.

Differences which did occur were primarily in the second through fourth decimal places

and, consequently, were essentially zero. There was a tendency for A values to differ

less from 1.0 for the longer 30-item test but none of these differences was greater than

.05. No consistent differences were observed among the five equating methods.

Differences in B coefficients also were very small, some ocurring in the second

decimal place but more in the third or fourth. As noted for the A coefficients,

differences of this magnitude are essentially zero. All of the B coefficients were

essentially zero, the theoretically expected value for this recovery study. There was a

slight tendency for B values to be closer to zero for the large sample and longer test

condition. No consistent differences were observed among the five equating methods.

Recovery of Underlying Parameters. Recovery of the underlying parameters

with each method was evaluated with root mean square differences (RMSD) between

the transformed estimates and the generating parameters. RMSDs for the 300
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examinee samples are given in Tables 5 and 6 for the 10- and 30-item tests,

respectively. RMSDa for the 1,000 examinee samples are given in Tables 7 and 8

for the 10- and 30-item tests, respectively. Mean values for RMSDs for both equating

coefficients are given for the five equating methods at the bottom of each table.

Correlations between estimates and the generating parameters are also given in these

tables.

Insert Tables 5, 6, 7, and 8 about here

Recovery of discrimination parameters was good in all data sets. Correlations

between estimated discrimination and generating parameters ranged from .731 to .954

in the 300 examinee samples and from .912 to .961 in the 1,000 examinee samples. All

correlations indicate good recovery. Mean RMSD values ranged from .1231 to .1494

for the small sample conditions and .0789 to .0903 in the large sample conditions. In

addition, smaller IIMSDs were observed within each test length for the large sample

conditions. The RMSDs for discrimination also indicate good recovery. No differences

in recovery were observed among equating methods.

Recovery of location parameters was good under each of the conditions simulated.

Correlations with underlying parameters were nearly perfect, ranging from .992 to

.999. RMSDs in the 300 examinee test conditions were relatively small (average

RMSDs ringed from .1274 to .1449) but were about twice as large as those in the

1,000 examinee conditions (average RMSDs ranged from .0631 to .0744). Values

of RMSDs indicated excellent recovery of location parameters. No differences were

observed among the five equating methods.

RMSDs showed very slight differences among individual data sets within each

of the test length by sample size conditions. For average di:crimination or location
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parameters, however, no meaningful differences were found among the five equating

methods under any of the simulated conditions. What differences were observed

were so small (essentially the only differences that were observed were in the second

through fourth decimal places) as to be essentially non-existent.

Discussion

The comparability of IRT item parameter estimates across different tests mea-

suring the same underlying trait is an important matter for test developers and re-

searchers since all decisions about examinees are derived from these estimates. Efforts

to reduce errors in transformation of estimates obtained in different groups are im-

portant concerns. In the present paper, we compared five methods for linking item

parameter estimates for graded response models. These five methods are among the

more commonly used for transforming item and ability parameter estimates from one

metric to another. The comparisons were based on measures of similarity to the gen-

erating parameters of the item parameter estimates obtained following transformation

via each of the methods to the underlying metric.

Differences in equating coefficients were quite small under all sample size by test

length conditions. In the small sample conditions, there was a slight tendency for A

and B coefficients to be closer to the theoretically expected values for the 30-item

tests. These differences, however, occurred only in the second or third decimal places

and, as such, were essentially non-existent. In the large sample conditions, similar

lack of deviations from values of 1.0 for A and 0 for B were found.

Results under the conditions simulated indicated that recovery was good for all

conditions. Recovery was slightly better for the long test and the large sample

conditions but differences among all the simulated conditions actually were quite

small. Further, essentially no differences were observed among linking methods.

These results are consistent with previous research in that, when the underlying
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ability and item difficulty distributions match, estimation of location parameters is

optimal and of discrimination parameters tends to be generally good. Recovery of

underlying parameters under such conditions also tends to be very good so that

differences among equating methods should be quite minimal.

One of the equating methods compared in this study, the minimum chi-

square method, required use of the off-diagonal covariance terms for each item.

Unfortunately, currently available computer programs do not provide values of these

off-diagonal terms so they were not available for the present study. The chi-square (or

the quadratic function) that was minimized was obtained based only on the diagonal

terms of '.he variance-covariance matrix. Thus, Eimi in Equation 30 is a diagonal

matrix. The resulting statistic, and the one used in the present study, is related to

Pearson'g (1926) coefficient of racial likeness (CRL). It has been found to be highly

correlated with the Mahalanobis D2 (i.e., 4ni) in Equation 26 and recommended as

a replacement for D2 because of its computational ease (Gower, 1972; Mardia, 1977;

Penrose, 1954).

Finally, given the results of this study, one should feel relatively comfortable using

any of the five equating methods when ability and item location distributions are well-

matched. That is, when item parameters are estimated under optimal conditions such

as used in the present study, little if any real differences appear to be present among

these equating methods. Additional research on situations in which item parameters

are less well-estimated would be important in further developing our understanding

of the effectiveness of each of these equating methods. Under the present conditions,

however, the results do not indicate any reason for selecting one method over the

other. Neither is there any theoretical rationale for selection one method over the

other. The simplest method to use is clearly the LH method. The minimum chi-square

method has some advantage in ease of implementation over the test characteristic
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curve method but both methods are far more computationally intensive than the LH

method.

Graded response models are particularly appropriate for constructed response

item formats such as found in many types of performance tests. Development and

comparison of the procedures for equating graded response items as was done in this

study should provide some useful information toward solving some of the equating

problems present in performance and constructed response types of tests.
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TABLE 1
Equating Coefficients A and B for 300-Examinee-10-Item Data Set

Rep.'
Equating

Coefficient
Method

LH MS WMS MCS TCC
1st A .9197 .9257 .9592 .9357 .9220

B .0659 .0665 .0021 .0829 .0725

2nd A 1.0232 .9731 1.0132 1.0078 1.0009
B .0554 .0496 .0008 .0328 .0477

3rd A .9599 .9190 .9244 .9465 .9352
B -.0252 -.0257 -.0008 -.0364 -.0294

4th A .9970 .9910 1.0322 1.0124 .9878
B -.0270 -.0264 -.0011 -.0427 -.0265

5th A .9778 .9631 .9901 .9819 .9706
B .0032 .0020 -.0003 -.0125 -.0075

'Replication.
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TABLE 2
Equating Coefficients A and B for 800-Examinee-SO-Item Data Set

Rep.a
Equating

Coefficient
Method

LH MS WMS MCS TCC
1st A .9943 .9811 1.0173 1.0064 .9861

B .0198 .0191 .0001 .0147 .0218

2nd A 1.0336 .9857 1.0402 1.',"3.56 1.0105
B -.0454 -.0449 -.0004 -.0468 -.0494

3rd A 1.0305 1.0082 1.0332 1.0280 1.0174
B -.0362 -.0362 -.0004 -.0499 -.0399

4th A 1.0561 1.0437 1.0606 1.0569 1.0461
B -.0028 -.0030 .0001 .0069 -.0028

5th A 1.0185 .9928 1.0279 1.0185 1.0018
B -.0147 -.0151 -.0001 -.0067 -.0122

°Replication.

20



TABLE 3
Equating Coefficients A and B for 1000-Examinee-10-Item Data Sets

Rep.a
Equating

Coefficient
Method

LH MS WMS MCS TCC
1st A .9' 15 .9580 .9575 .9628 .9627

B -.0295 -.0302 -.0006 -.0260 -.0286

2nd A .9836 .9654 .9792 .9779 .9681
B -.0146 -.0153 -.0002 -.0085 -.0160

3rd A .9504 .9424 .9600 .9511 .9470
B -.0266 -.0266 -.0006 -.0261 -.0243

4th A .9785 1.0025 1.0079 .9961 .9917
B .0013 .0026 -.0001 -.0049 .0022

5th A .9780 .9706 .9734 .9722 .9658
B .0103 .0108 .0002 .0074 .0096

Replication.

21



TABLE 4
Equating Coefficients A and B for 1000-Examinee-SO-Item Data Sets

Rep,"
Equating

Coefficient
Method

LH MS WMS MCS TCC
1st A 1.0165 1.0103 1.0253 1.0172 1.0155

B -.0165 -.0165 -.0002 -.0208 -.0203

2nd A 1.0160 1.0135 1.0272 1.0205 1.0143
B .0086 .0080 .0000 .0023 .0067

3rd A .9965 .9858 1.0091 .9955 .9905
B -.0105 -.0104 -.0001 -.0129 -.0113

4th A .9854 .9818 .9932 .9882 .9827
B -.0228 -.0226 -.0002 -.0182 -.0218

5th A .9935 .9879 1.0083 .9960 .9902
B -.0036 -.0037 -.0001 -.0088 -.0069

'Replication.

22



TABLE 5
Root Mean Squared Differences and Correlation for 300-Examinee-10-Item

Data Sets

Rep.° Parameter
Method

Corr.LH MS WMS MCS TCC
1st Discrimination .0752 .0751 .0958 .0780 .0750 .954

Location .1115 .1116 .1389 .1139 .1117 .995

2nd Discrimination .1602 .1833 .1617 .1632 .1658 .731
Location .1606 .1459 .1647 .1552 .1515 .992

3rd Discrimination .1196 .1453 .1930 .1241 .1309 .903
Location .1497 .1379 .1470 .1444 .1406 .993

4th Discrimination .1339 .1353 .1388 .1334 .1364 .881
Location .1276 .1270 .1401 .1318 .1268 .994

5th Discrimination .1268 .1305 .1272 .1266 .1281 .847
Location .1300 .1279 .1336 .1319 .1290 .994

Average Discrimination .1231 .1339 .1433 .1251 .1272 .863
Location .1359 .1301 .1449 .1354 .1319 .994

aReplication.
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TABLE 6
Root Mean Squared Differences and Correlation for 300-Examinee-SO-Item

Data Sets

Rep.a Parameter
Method

Corr.LH MS WMS MCS TCC
1st Discrimination .1234 .1273 .1246 .1228 .1254 .891

Location .1307 .1288 .1396 .1340 .1293 .994

2nd Discrimination .1550 .1772 .1545 .1564 .1616 .777
Location .1566 .1426 .1663 .1529 .1474 .992

3rd Discrimination .1296 .1374 .1292 .1300 .1331 .876
Location .1136 .1094 .1200 .1137 .1105 .996

4th Discrimination .1303 .1327 .1300 .1302 .1321 .837
Location .1235 .1220 .1244 .1240 .1221 .995

5th Discrimination .1623 .1725 .1609 .1623 .1678 .851
Location .1394 .1344 .1435 .1396 .1354 .993

Average Discrimination .1401 .1494 .1398 .1403 .1440 .847
Location .1328 .1274 .1388 .1328 .1289 .994

'Replication.
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TABLE 7
Root Mean Squared Differences and Correlation for 1000-Examinee-10-Item

Data Sets

Rep.a Parameter
Method

Corr.LH MS WMS MCS TOO
1st Discrimination .0653 .0689 .0692 .0668 .0668 .959

Location .0444 .0420 .0513 .0427 .0425 .999

2nd Discrimination .0956 .1038 .0968 .0972 .1020 .955
Location .0855 .0820 .0855 .0841 .0822 .997

3rd Discrimination .0966 .0985 .0967 .0965 .0972 .923
Location .0674 .0664 .0749 .0675 .0669 .998

4th Discrimination .0895 .0972 .1007 .0938 .0920 .912
Location .0708 .0661 .0667 .0667 .0669 .998

5th Discrimination .0830 .0831 .0827 .0828 .0844 .961
Location .0592 .0591 .0603 .0593 .0593 .999

Average Discrimination .0860 .0903 .0892 .0874 .0885 .942
Location .0655 .0631 .0677 .0641 .0E36 .998

aReplication.
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TABLE 8
Mean Squared Differences and Correlation for 1000-Examinee-SO-Item

Data Sets

Rep.* Parameter
Method

Corr.LH MS WMS MCS TCC
1st Discrimination .0829 .0835 .0839 .0829 .0829 .923

Location .0695 .0690 .0734 .0698 .0695 .998

2nd Discrimination .0792 .0795 .0798 .0791 .0794 .943
Location .0713 .0712 .0739 .0721 .0712 .998

3rd Discrimination .0776 .0801 .0792 .0777 .0786 .937
Location .0734 .0719 .0784 .0732 .0723 .998

4th Discrimination .0772 .0777 .0775 .0771 .0776 .943
Location .0771 .0708 .0759 .0716 .0709 .998

5th Discrimination .0779 .0788 .0800 .0778 .0783 .939
Location .0676 .0671 .0702 .0683 .0673 .998

Average Discrimination .0790 .0799 .0801 .0781 .0794 .937
Location .0655 .0631 .0677 .0641 .0636 .998

*Replication.
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